Building an HPSG-based Indonesian Resource Grammar (INDRA)

David **Moeljadi**, Francis **Bond**, Sanghoun **Song** {D001,fcbond,sanghoun}@ntu.edu.sg

Division of Linguistics and Multilingual Studies, Nanyang Technological University Singapore

30 July 2015

Why we need the Indonesian Resource Grammar (INDRA)?

- No broad-coverage, open-source computational grammar for Indonesian
- No robust Indonesian grammar modelled in Head Driven Phrase Structure Grammar (HPSG) and Minimal Recursion Semantics (MRS) framework
- No robust rule-based machine translation for Indonesian

Indonesian Resource Grammar (INDRA)

- The first broad-coverage, open-source computational grammar for Indonesian, modelled in HPSG and MRS
- Created and developed using tools from Deep Linguistic Processing with HPSG Initiative (DELPH-IN)
- Aims to parse and treebank Indonesian text in the Nanyang
 Technological University Multilingual Corpus (NTU-MC)
- Will be applied to machine translation

Indonesian language

- Alternate names: bahasa Indonesia
- Population: 43 million L1 speakers (2010 census), 156 million L2 speakers (2010 census)
- Language status: national language of Indonesia (1945 Constitution, Article 36)
- Dialects: over 80% lexical similarity with Standard Malay
- Writing: Latin script

Morphology and syntactic typology of Indonesian

Morphological classification: mildly agglutinative

Word order: SVO

Position of negative word: S-Neg-V-O

Order of Adj and Noun: N-Adj

Order of Dem and Noun: N-Dem

Some Indonesian sentences

(1) X V-intransitive
Adi tidur.
Adi sleep
"Adi sleeps."

(2) X V-transitive Y
Adi mengejar Budi.
Adi ACT-chase Budi
"Adi chases Budi."

Previous work on Indonesian computational grammar

- No previous work done on Indonesian HPSG
- Much work has been done using Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982)
 - Arka and Manning (2008) on active and passive voice
 - ► Arka (2000) on control constructions
- Arka (2012) and Mistica (2013) have worked on the computational grammar "IndoGram" which is a part of the ParGram (Sulger et al., 2013)
 - ▶ Has details of many phenomena

but

- Not open-source
- Not very broad in its coverage
- Does not produce MRS, so it cannot be easily incorporated into our machine translation system

DEep Linguistic Processing with HPSG - INitiative (DELPH-IN)

- Research collaboration between linguists and computer scientists adopting HPSG and MRS
- Builds and develops open-source grammar
 - ► English Resource Grammar (ERG)
 - Jacy (Japanese grammar)
 - **.**..
- Typed feature structures are defined using Type Description Language (TDL)
- Builds and develops open-source tools for grammar development
 - Grammar and lexicon development environment (LKB)
 - ► A web-based questionnaire for writing new grammars (The LinGO Grammar Matrix)
 - Efficient parsers/generators (ACE)
 - Dynamic treebanking (ITSDB, FFTB, ACE)
 - Machine Translation engine (LOGON, ACE)

Creation and development of INDRA

- Bootstrapped using The LinGO Grammar Matrix (Bender et al., 2010) (http://www.delph-in.net/matrix/customize/matrix.cgi)
 - Word order
 - ▶ Noun and verb subcategorization
 - Morphology
 - **.**..
- Lexical acquisition
- Additions and changes to TDL files
 - Pronouns, proper names and adjectives
 - Decomposing words
 - Morphology
 - **.**..
- Associated resources

Lexical acquisition

Assumptions

- Manually building a lexicon is labor-intensive and time-consuming
 - ★ (Semi-)automatic lexical acquisition is vital
 - ★ Wordnet Bahasa can be the lexical source
- ► The number of arguments of verbs with similar meaning should be the same across languages
 - ★ Verb subcategorization in ERG can be used

Verbs in ERG

- ▶ 345 verb types: intransitive, transitive, 'be'-type etc.
- ▶ Top 11 most frequently used types in the corpus were chosen
 - ★ Verb of motion (+PP): go, come
 - * Intransitive: occur, stand
 - ★ Verb with optional complementizer: believe, know
 - ***** .

Wordnet verb frames for lexical acquisition

- Wordnet Bahasa
 - Groups nouns, verbs, adjectives and adverbs into sets of concepts or synsets
 - Verb frames or subcategorization for each verb

rame
ebody —s something
ebody —s
nething —s something
ebody —s something

Table: Three of 69 synsets of makan "eat" and their verb frames in Wordnet

Workflow of lexical acquisition and results

- Check whether the verb is in Wordnet
- Check whether the verb has Indonesian translation(s)
- Oheck whether the verb has the correct verb frame(s)
- Oheck manually the Indonesian translation(s)

Result: 939 subcategorized verbs and 6 rules were added

Decomposed words

 Assumption: pronouns can be decomposed across grammars (Seah and Bond, 2014)

e.g. sini "here" -> tempat "place" + ini "this"

	proximal	medial	remote	
Dama a maturati:	ini	itu		
Demonstratives	"this"	"that	,,,	
	sini	situ	sana	
Locatives		"there"	"there"	
	"here"	(not far off)	(far off)	

Table: Demonstrative and locative pronouns in Indonesian

Type hierarchies for heads and demonstratives

Figure: Type hierarchy for heads

Figure: Type hierarchy for demonstratives

MRS representations of di situ "there"

Figure: MRS representation of di situ (lit. "at there")

Morphology

Inflection with active prefix meN- and passive prefix di-

(3) a. **X meN-kejar Y**Adi mengejar Budi.
Adi ACT-chase Budi

"Adi chases Budi."

 Y di-kejar X, X is a 3rd person pronoun or a noun Budi dikejar Adi.
 Budi PASS-chase Adi

"Budi is chased by Adi."

Y X kejar, X is a pronoun or pronoun substitute
 Budi saya kejar.
 Budi 1sG chase

"Budi is chased by me."

Morphology of *meN*-

A number of sound changes occur when meN- combines with bases

Base	meN-+base	meaning		Base	meN-+base	meaning
p akai	me m akai	use	•	b eli	me mb eli	buy
t anam	me n anam	plant		d apat	me nd apat	get
k ejar	me ng ejar	chase		g anti	me ngg anti	replace
pr oses	me mpr oses	process		bom	me ngebom	bomb

Morphology of *meN*-

Allomorph	Initial orthography of the base		Example
mom	p	(L)	me mp akai "use"
mem-	pl, pr, ps, pt, b, bl, br, f, fl, fr, v	(R)	me mb eli "buy"
men-	t	(L)	me nt anam "plant"
men-	tr, ts, d, dr, c, j, sl, sr, sy, sw, sp, st, sk, sm, sn, z	(R)	me nc ari "seek"
meny-	S	(L)	<i>menysewa</i> "rent"
mong	k	(L)	me ngk irim "send"
meng-	kh, kl, kr, g, gl, gr, h, q, a, i, u, e, o	(R)	me ngg anti "replace"
me-	m, n, ny, ng, l, r, w, y	(R)	<i>melempar</i> "throw"
menge-	(base with one syllable)		me ngecek "check"

Parse tree result

Figure: Parse tree of Adi mengejar Budi "Adi chases Budi"

MRS result

Figure: MRS representation of Adi mengejar Budi "Adi chases Budi"

Evaluation with MRS test-suite

- MRS test-suite: a representative set of sentences designed to show some of the semantic phenomena
- The original set of 107 sentences are in English, translated into many languages including Indonesian (172 sentences)
 (http://moin.delph-in.net/MatrixMrsTestSuiteIndonesian)
- 55 of 172 sentences (32%) can be parsed. INDRA is not currently able to parse the others.
- 15% more would be covered once passives and relative clauses were added

	results / items	_
before	52 / 172	30.2%
after	55 / 172	32.0%

Table: Comparison of coverage in MRS test-suite before and after lexical acquisition

Associated resources

- Indonesian POS Tagger (Rashel et al., 2014) with ACE's YY-mode for unknown word handling
- Transfer grammar for machine translation

Nanyang Technological University Multilingual Corpus (NTU-MC)

- Parallel corpus, sense-tagged using Wordnet (lexical database) (http://compling.hss.ntu.edu.sg/ntumc/)
- Indonesian text data contains 2,197 sentences from Singapore Tourism Board (STB) website (http://www.yoursingapore.com)
- Ongoing process of adding Sherlock Holmes short stories
- INDRA aims to parse at least 60% of the NTU-MC Indonesian text in 2.5 years

Future work

- Increase the coverage of (phenomena in) INDRA
- Simultaneously build up MT (learning and building rules)
- Lexical acquisition
 - Extract more words from various parts-of-speech
 Simultaneously add lexical types, rules and constraints
 - Improve Wordnet Bahasa
 Wordnet Bahasa is growing, so hopefully the semi-automatic methodology for lexical acquisition may give better results
- Decomposed words
 - Expand to other heads such as time_n_rel and entity_n_rel
- Morphology
 - Cover all the exceptions
 - Expand to other verb types such as ditransitives
 - Analyze and implement passive constructions

Future work

- Phenomena to be covered
 - Relative clauses
 - Numbers
 - Quantifiers
 - Classifiers
 - Copula constructions
 - Passive constructions
 - Topic-comment constructions
 - Particles
 - Interrogatives
 - Imperatives

INDRA Top page

http://moin.delph-in.net/IndraTop

- Specifications
- Test-suites
- Demo page

Acknowledgments

- Thanks to Michael Wayne Goodman for setting up the demo page, giving precious comments on the slides and sharing his knowledge about GitHub
- Thanks to Dan Flickinger for teaching us Full Forest Treebanker (FFTB)
- Thanks to Fam Rashel for helping us with POS Tagger
- Thanks to Lian Tze Lim for helping us improve Wordnet Bahasa
- This research was partly supported by the Singapore MOE ARF Tier 2 grant That's what you meant: A Rich Representation for Manipulation of Meaning (MOE ARC41/13) and by joint research with Fuji-Xerox Corporation on Multilingual Semantic Analysis

