Lexical Perspective on Wordnet to Wordnet Mapping

Ewa Rudnicka,♡ Francis Bond,♠
Łukasz Grabowski,♣ Maciej Piasecki♡
Tadeusz Piotrowski♢

♡Wrocław University of Technology, Poland
♠Nanyang Technological University, Singapore
♣University of Opole, Poland
♢University of Wrocław, Poland

{ewa.rudnicka,maciej.piatecki}@pwr.edu.pl, bond@ieee.org,
lukasz@uni.opole.pl, tadeusz.piotrowski@uwr.edu.pl

GWC-2018: 2018-01-10
Outline

1. Introduction and Background
2. Equivalence Features
 - Formal features
 - Semantic features
 - Translatability
3. Equivalence types
 - Strong equivalence
 - Regular equivalence
 - Weak equivalence
4. Linking procedure
5. Current and Future Work
6. Conclusions
Finer linking

- Many wordnets link synsets through PWN
- Increasingly, many are linked through CILI
- For some pairs (such as Polish-English) there is a richer linking, covering synonymy, hyponymy, meronymy, register, ...
- But all of these links are at the synset level, and many synsets have multiple lexical units (LUs) — however the strength of linking may not be the same for all LUs
Motivation

During the plWordNet and Princeton WordNet synset mapping we observed the potential for finer sense mappings:

- \(\{złoto_{n:3}, \text{Au}_{n:1}\}^{PL} \)–syn \(\{\text{gold}_{n:3}, \text{Au}_{n:1}, \text{atomic number 79}_{n:1}\}^{EN} \)
- \(złoto_{n:3}^{PL} \) and \(\text{gold}_{n:3}^{EN} \)
- \(\text{Au}_{n:1}^{PL} \) and \(\text{Au}_{n:1}^{EN} \)
- Closer to bilingual lexicography
Goals

- We want to link at the LU level
- We distinguish strong, regular and weak equivalence links
- We created a procedure for deciding the strength
- We are now mapping LUs (pl-en), nouns first

Such finer sense mapping will be beneficial for translators and of great use for bilingual WSD
Prerequisites

- Sense mapping builds on synset mapping
- Sense links considered for pairs of Polish-English LUs from synsets linked by:
 + I-synonymy
 + I-partial synonymy
 + I-hyponymy
- Nouns mapped, other POS being mapped
Our goal is to operationalize the equivalence so that we can reliably determine its strength using various features.

- **Formal**: number, countability and gender, ...
- **Semantic** and **Pragmatic**: sense, lexicalisation (of concepts), register, collocations, co-text and context
- **Translatability**: based on dictionary listing and translation equivalences extracted from the Polish-English parallel corpus: *Paralela*
Formal features

- **part of speech** (given)
- **gender** (if lexicalised)
- **number** (except for pluralia and singularia tantum)
- **countability** (except for mass/count contrasts in lexicalisation)
Semantic features

- **sense** (going beyond truth-conditions)
- **lexicalisation of concepts** (comparing denotations)
- **register**
- **collocations** (fixed phrases, from dictionaries)
- **co-text** (immediate sentence environment, from parallel corpus)
- **context** (situational and world knowledge)
Translatability

- dictionary listing
 - frequency of occurrence in multiple dictionaries
 - rank of the translated term
- translation probabilities
 - extracted from the Polish-English parallel corpus Paralela
Equivalence types

These are used to link individual lexical units (senses) between the two wordnets.

- **Strong**
- **Regular**
- **Weak** (implied)
Strong Equivalence features

- identity in sense
- similarity in lexicalisation of concepts
- compatibility in register
- a shared set of typical co-texts
- dictionary listing (as the first equivalent)
- bidirectionality (but not uniqueness) of translation
- frequent parallel corpora hits, preferably
Strong Equivalence - examples

- \textit{drzwi}_{n:1} \ I\text{-syn} \ \textit{door}_{n:1}
- \textit{grzmot}_{n:1} \ I\text{-syn} \ \textit{thunder}_{n:2}
- \textit{narzeczona}_{n:1} \ I\text{-syn} \ \textit{fiancée}_{n:1}
- \textit{centrala}_{n:2} \ I\text{-syn} \ \textit{headquarters}_{n:1}
- \textit{gruba ryba}_{n:1} \ I\text{-partial-syn} \ \textit{big fish}_{n:1}

- \textit{okulary}_{n:1}^{PL} \ I\text{-syn} \ \textit{glasses}_{n:3}^{EN}

For all, identity in sense and register, frequent (often first) dictionary listing, many parallel corpora hits
Regular equivalence features

- largely similar in sense
- compatibility in register
- dictionary listing
- bidirectionality of translation
- a similar set of typical co-texts
- some parallel corpora hits, preferably
- some differences in lexicalisation of concepts are allowed
Regular equivalence - examples

- **zabytek**\(_{n:1}\) I–partial–syn **monument**\(_{n:2}\)
 Lexical gap (on the English side)

- **narzeczona**\(_{n:1}\) I–syn **bride-to-be**\(_{n:1}\)
 Additional (temporal) sense specification on the English side; few parallel corpora hits

- **centrala**\(_{n:2}\) I–syn **central office**\(_{n:1}\)
 Few parallel corpora hits for this pair
Weak equivalence

- All other pairs of LUs from plWordNet and Princeton WordNet synsets linked by I-synonymy, I-partial synonymy and I-hypernymy that do not meet the criteria for strong or regular equivalence
- can be automatically derived from the synset-level links
- often culture specific concepts absent from the second language (cultural gaps) and linked via I-hyponymy relation
Weak equivalence - examples

- $\textit{centrala}_{n:2}$ - $\textit{main office}_{n:1}$, $\textit{home office}_{n:2}$, $\textit{home base}_{n:2}$
- very few or no Paralela hits

- $\{\textit{stachanowiec}_{n:1}, \textit{przodownik pracy}_{n:1}\}$
- I-hypo $\{\textit{toiler}_{n:1}\}$
- Polish culture specific term, with no direct equivalent: “model worker who greatly exceeds the quota”
Linking procedure

- check features
 - formal
 - semantic
 - pragmatic
- check WordNet info first (sense and synset relations, glosses, register info, examples)
- consult external resources (dictionaries, parallel corpora)
- then assign proper equivalence type: strong, regular, weak
the procedure is being verified on a random sample of lexical unit pairs

extracted from synsets linked by I-synonymy, I-partial synonymy, I-hyponymy

proportionally for each relation and link type (1-1, 1-many, many-1, many-many)

extracted 100 random sets with 10 instances for each of the 12 classes: one checked so far
Challenges for estimating translation probability

- polysemous lemmas
- no sense tagged bilingual corpora

⇒ creates difficulty in estimating the number of hits of a specific sense
⇒ manual work and interpretation required
Conclusions

- created a method for finer linking of senses (LUs)
- of great potential for (manual and automatic) translation as well as (bilingual) word sense disambiguation
- adjustable for other language pairs and grammatical categories
- possible to partly automate generate prompts for efficient annotation
Acknowledgement

This work was supported by the National Science Centre in Poland under the agreement No. UMO-2015-/18/M/HS2/00100.
Today is the excursion

- 13:00 Bus leaves NEC to Bollywood Vegies
- 15:00 Bus leaves BV to Sungei Buloh (Visitor Center)
 - if too wet we may send one bus back to NEC
- 18:30 Bus leaves Sungei Buloh (Wetland Center) to NEC
- Please dress comfortably
 - comfortable shoes (and hat — mainly in shade)
 - rain-friendly clothes
 - water bottle
- You are free to leave mid-way
 - we will assume you have done so if you are not on the bus