Towards Cross-checking WordNet and SUMO Using Meronymy

Javier Álvez German Rigau

LoRea & IXA Groups
Computer Languages and Systems Department
University of the Basque Country (UPV/EHU)
1 Introduction

2 Cross-checking WordNet and Adimen-SUMO

3 Some Experimental Results

4 Conclusions and Future Work
Cross-checking knowledge sources

- This work is an initial study about:
 - Knowledge representation
 - Common Sense (world knowledge)
 - Reasoning

- In particular, we focus on:
 - WordNet (Fellbaum, 1998)
 - SUMO (Niles and Pease, 2001)
 - WN-SUMO Mapping (Niles and Pease, 2003)

- We expect all these knowledge sources to encode correct world knowledge (true knowledge).

- Despite being created manually, they are not free of errors and discrepancies.

- We apply a new Black-box strategy (Álvez et al., 2017b) to the meronymy information encoded in these resources.
SUMO (Niles and Pease, 2001)

- IEEE Standard Upper Ontology Working Group
- SUMO syntax goes beyond first-order logic (FOL)
- SUMO cannot be directly used by FOL Automated Theorem Provers (ATPs) without a suitable transformation
- Different transformations of SUMO into FOL:
 - TPTP-SUMO (Pease and Sutcliffe, 2007)
 - Adimen-SUMO (Álvez et al., 2012)
Adimen-SUMO I

- Following the line of (Horrocks and Voronkov, 2006)
- Obtained by applying a reengineering process to SUMO
 - With the help of ATPs (Automated Theorem Provers)
 - Around an 88% of the core of SUMO (top and middle levels) is translated
 - Domain ontologies are not used (by now)
 - The resulting ontology can be used in tasks that involve reasoning with commonsense knowledge
- The process of manually debugging the ontology is very costly
 - Only 64 manually created tests
 - Example:

\[
(\rightarrow \\
(\text{and} \\
 (\text{instance} \ ?\text{BRAIN} \ \text{Brain}) \\
 (\text{instance} \ ?\text{PLANT} \ \text{Plant})) \\
(\text{not} \\
 (\text{properPart} \ ?\text{BRAIN} \ ?\text{PLANT})))
\]
Adimen-SUMO II

- We have proposed different methodologies for the automatic debugging ontologies like Adimen-SUMO
 - Black-box testing strategies (Álvez et al., 2015, 2017b)
 - White-box testing strategies (Álvez et al., 2017a)
- More than 100 axioms from Adimen-SUMO has been improved
Black-box Testing I

- Introduced in (Álvez et al., 2015) and fully described in (Álvez et al., 2017b)
- Adaptation of the methodology for the design and evaluation of ontologies introduced in (Grüninger and Fox, 1995)
- Based on the use of Competency Questions (CQs):
 - Problems that an ontology is expected to answer
- Its application is automatic by means of the use of ATPs
- Classification of (dual) problems (truth and falsity tests):
 - Passing: the ATPs are able to demonstrate a truth test
 - Non-passing: the ATPs are able to demonstrate a falsity test
 - Unknown: the ATPs produce no answer within a time limit
Black-box Testing II

- CQs are automatically created on the basis of few Question Patterns (QPs) by exploiting WordNet and its mapping into SUMO

- In (Álvez et al., 2017b):
 - antonym and event (agent, instrument and result) relations
 - 11 QPs are proposed
 - More than 7,500 CQs are created
 - More than 43% of CQs are validated
 - Example:

\[
\forall Y \left(\text{instance } Y \text{ MusicalComposition} \Rightarrow \exists X \left(\text{instance } X \text{ ComposingMusic} \land \text{result } X Y\right)\right)
\]
Mapping between WordNet and SUMO

- Described in (Niles and Pease, 2003)
- It connects synsets of WordNet to terms of SUMO using 3 relations:
 - equivalence (=)
 - subsumption (+)
 - instance (@)
- Some examples:

 \[
 \langle \text{calcium}^1 \rangle : [\text{Calcium}_c =]
 \]

 \[
 \langle \text{calcium}_\text{oxide}^1 \rangle : [\text{CompoundSubstance}_c +]
 \]

 \[
 \langle \text{police}_\text{officer}^1 \rangle : [\text{PoliceOfficer}_a =]
 \]

 \[
 \langle \text{police}_\text{force}^1 \rangle : [\text{PoliceOrganization}_c +]
 \]
Introduction

Cross-checking WordNet and Adimen-SUMO

Some Experimental Results

Conclusions and Future Work
WordNet v3.0 provides 3 part-whole relations (22,187):

- **part**: the general meronymy relation (9,097)
- **member**: it relates particulars and groups (12,293)
- **substance**: it relates physical matters and things (797)

For example:

\[
\langle \text{committee}_n \rangle \rightarrow \langle \text{member} \rangle \rightarrow \langle \text{committee_member}_n \rangle
\]

\[
\langle \text{wine}_n \rangle \rightarrow \langle \text{substance} \rangle \rightarrow \langle \text{grape}_n \rangle
\]
First, creating a mapping between WordNet and Adimen-SUMO:

\[
\begin{align*}
&[\text{Cooking}_c+] \quad \text{(Top level)} \\
&[\text{subclass}] \\
&\langle \text{frying}_n^1 \rangle : [\text{Frying}_c=] \quad \text{(Food ontology)}
\end{align*}
\]

Propose a formal characterization of the mapping information:

\[
\langle \text{male\textunderscore horse}_n^1 \rangle : [\text{Male}_a+] [\text{Horse}_c+]
\]

- **Literal interpretation:**

 \[
 \text{(and} \\
 \text{($instance \ X \ Male)} \\
 \text{($instance \ X \ Horse))}
 \]

- **Precise interpretation:**

 \[
 \text{(and} \\
 \text{(attribute \ X \ Male)} \\
 \text{($instance \ X \ Horse))}
 \]
Four different QPs depending on the used mapping relations (*precise* interpretation):

- equivalence
- subsumption or instance

QPs are instantiated according to the mapping information of the synsets in the WordNet meronymy pairs.
Question patterns for the Creation of CQs (II)

- Applying the first QP (precise interpretation):

\[
\text{(exists} \ (\ ?X \ ?Y) \\
\text{(and} \\
\text{<s_part} \ ?X> \\
\text{<s_whole} \ ?Y> \\
\text{(<SUMO_predicate>} \ ?X \ ?Y))
\]

- to the following WN-SUMO meronymy relation:

\[
\langle\text{genus_malacosoma}_1^1 \rangle : \ [\text{Larval}_{a+}] \\
\langle\text{member} \rangle \uparrow \\
\langle\text{member}_r \rangle \\
\langle\text{malacosoma_americana}_1^1 \rangle : \ [\text{Insect}_{c+}]
\]
Question patterns for the Creation of CQs (III)

- Creates the following CQ:

\[
\text{(exists } (?X ?Y) \\
\text{(and} \\
\text{($instance \ ?X \text{ Insect})} \\
\text{(attribute \ ?Y \text{ Larval})} \\
\text{(member \ ?X \ ?Y)))}
\]
Question patterns for the Creation of CQs (IV)

- Mapping of WordNet relations to Adimen-SUMO predicates, which have domain restrictions:

 \[
 \langle \text{part} \rangle : [\text{part}_r(\text{Object}_c \times \text{Object}_c)] \\
 \langle \text{member} \rangle : [\text{member}_r(\text{SelfConnectedObject}_c \times \text{Collection}_c)] \\
 \langle \text{substance} \rangle : [\text{material}_r(\text{Substance}_c \times \text{CorpuscularObject}_c)]
 \]

- Many discrepancies arise during the instantiation of question patterns.
- 14,513 part relations from 22,187 (65%) do not hold domain conditions.
 - Example:

 \[
 \langle \text{wine}_1^1 \rangle : [\text{Wine}_c=] \\
 \]
 \[
 \langle \text{substance} \rangle \uparrow \quad [\text{material}_r] \\
 \]
 \[
 \langle \text{grape}_1^1 \rangle : [\text{FruitOrVegetable}_c+] \\
 \]

 - Reason: the first argument of \text{material}_r is restricted to be \text{Substance}_c, which is incompatible with \text{FruitOrVegetable}_c
- So, we concentrate on the remaining 7,674 relations (35%)
Some Experimental Results

1 Introduction

2 Cross-checking WordNet and Adimen-SUMO

3 Some Experimental Results

4 Conclusions and Future Work
Creating CQs and applying ATPs

- We apply the 4 QPs to the 7,674 relations allowing to create 2,145 CQs.
- When testing these CQs using ATPs such as Vampire (Kovács and Voronkov, 2013) or E-prover (Schulz, 2002):
 - **Passing**: knowledge validation
 - **Non-passing**: knowledge mismatches
 - WN-SUMO mapping issues
 - WordNet issues
 - SUMO issues
 - **Unknown**: Missing knowledge ... or insufficient execution time?
Knowledge Validation

Example:

\[\langle \text{police-force}_1 \rangle : [\text{PoliceOrganization}_{c^+}] \]

\[\langle \text{member} \rangle \]

\[\langle \text{police-officer}_1 \rangle : [\text{PoliceOfficer}_{a=}] \]

Reason:
- The resulting CQ is entailed by Adimen-SUMO:

\[
(\forall Y) \\
(\Rightarrow) \\
(\text{attribute } Y \text{ PoliceOfficer}) \\
(\exists X) \\
(\text{and}) \\
(\text{$instance } X \text{ PoliceOrganization}) \\
(\text{member } X Y)))))
\]
Detection of Mapping Mismatches

- Example:

\[
\langle \text{genus_malacosoma}_n^1 \rangle : [Larval_a^+] \\
\uparrow \quad \uparrow \quad \uparrow \\
\langle \text{member} \rangle : \langle \text{member}_r \rangle \\
\langle \text{malacosoma_americana}_n^1 \rangle : [\text{Insect}_c^+]
\]

- Reason:
 - The attribute \(\text{Larval}_a \) cannot be applied to groups in Adimen-SUMO
Detection of WordNet Issues

- Example:

\[
\langle \text{cell}^2_n \rangle : [\text{Cell}_c =]
\]

\[
\langle \text{part} \rangle \quad [\text{part}_r]
\]

\[
\langle \text{cell}_nucleus}^1_n \rangle : [\text{CellNucleus}_c =]
\]

- Reason:
 - Some cells lack a nucleus, as stated by the following Adimen-SUMO axiom:

\[
(\forall \ ?C) (\Rightarrow

(\$\text{instance} \ ?C \ \text{RedBloodCell})

(\not \ (\exists \ ?N)

(\text{and}

(\$\text{instance} \ ?N \ \text{CellNucleus})

(\text{part} \ ?N \ ?C))))))
\]
Detection of Adimen-SUMO Issues

- Example:

\[
\langle \text{water_ice}_n^2 \rangle : [\text{Solid}_a+] \\
\langle \text{substance} \rangle \quad [\text{material}_r] \\
\langle \text{water}_n^1 \rangle : [\text{Water}_c=]
\]

- Problem:
 - The application of subattributes of \text{PhysicalState}_A (as \text{Solid}_a) was restricted to be only! a property of \text{Substance}_c:

\[
(\forall \text{OBJ}) \quad (\equiv) \\
\quad ($\text{instance } \text{OBJ } \text{Substance}) \\
\quad (\exists \text{ATTR}) \\
\quad (\text{and} \\
\quad \quad ($\text{instance } \text{ATTR } \text{PhysicalState}) \\
\quad \quad (\text{attribute } \text{OBJ } \text{ATTR}))))
\]
Some Experimental Results

Summary

- Reported in (Álvez and Rigau, 2018)

<table>
<thead>
<tr>
<th>SUMO relations</th>
<th>CQs</th>
<th>QP #1</th>
<th>QP #2</th>
<th>QP #3</th>
<th>QP #4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>part<sub>r</sub></td>
<td></td>
<td>+599</td>
<td>+56</td>
<td>+162</td>
<td>+8</td>
<td>+825</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>-0</td>
<td>-1</td>
<td>-5</td>
<td>-12</td>
</tr>
<tr>
<td>member<sub>r</sub></td>
<td></td>
<td>+10</td>
<td>+1</td>
<td>+1</td>
<td>+0</td>
<td>+12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9</td>
<td>-0</td>
<td>-0</td>
<td>-0</td>
<td>-9</td>
</tr>
<tr>
<td>material<sub>r</sub></td>
<td></td>
<td>+17</td>
<td>+1</td>
<td>+2</td>
<td>+0</td>
<td>+17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0</td>
<td>-2</td>
<td>-0</td>
<td>-0</td>
<td>-2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>+626</td>
<td>+58</td>
<td>+165</td>
<td>+8</td>
<td>+857</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15</td>
<td>-2</td>
<td>-1</td>
<td>-5</td>
<td>-23</td>
</tr>
</tbody>
</table>

- 857 Passing CQs (39.95% of total) enable to validate the knowledge of WordNet, SUMO and their mapping
- <code>part</code> is better aligned and covered (825 truth-tests, 42.09%) than <code>member</code> (only 12 truth-tests, 9.92%) and <code>substance</code> (17 truth-tests, 26.56%)
- Different issues are detected (23 falsity-tests, 1.07%)
- More than 60% of the total is <code>Unknown</code>.

Javier Álvez, German Rigau (UPV/EHU)
Introduction

Cross-checking WordNet and Adimen-SUMO

Some Experimental Results

Conclusions and Future Work
Conclusions

- Framework and benchmark for formal commonsense reasoning
- More than 10,000 CQs available (around 60% Unknown)!
- First steps cross-checking of WordNet, Adimen-SUMO and its mapping:
 - Validation of some pieces of knowledge
 - Detection of knowledge mismatches
 - Detection of missing knowledge
- Resources are ready for its application to practical NLP tasks
- http://adimen.si.ehu.es/web/AdimenSUMO
- https://vprover.github.io/
- https://github.com/eprover/eprover
Future Work

- Improving the WN-SUMO mapping
- Extending our proposal to additional WordNet relations
- Automatically derive new SUMO axioms from WordNet knowledge

