HG4041 Theories of Grammar

Long Distance Dependencies

Francis Bond
Division of Linguistics and Multilingual Studies
http://www3.ntu.edu.sg/home/fcbond/
bond@ieee.org

Lecture 11
Location: HSS SR3
Overview

- Some examples of long-distance dependencies
- What is new and different about it
- Broad outlines of our approach
- Details of our approach
- Subject extraction
- Coordinate Structure Constraint
A Note on Adjectives

Attributive adjectives are related to predicative adjectives by a lexical rule that co-indexes the first element of ARG-ST with MOD and sets SPR to an empty list: \textit{The dog is red} \rightarrow \textit{The red dog}

We can’t just co-index SPR and MOD. Why?

To form sentences, the SPR adjectives need a subject-raising \textit{be} to make the head of the sentence a verb.
Long Distance Dependencies
Examples

➢ Grammatical:

(1) Did you find something?
(2) Tell me you talked to someone!

➢ Ungrammatical:

(7) *did you find
(8) *you talked to

➢ wh-questions:

(3) What did you find?
(4) Tell me who you talked to

➢ topicalization:

(9) The manual, I can’t find.
(10) Chris, you should talk to.

➢ relative clauses:

(5) the item that I found
(6) the guy who(m) I talked to

➢ easy-adjectives:

(11) My house is easy to find.
(12) Pat is hard to talk to.
What these have in common

- There is a **gap**: nothing following *find* and *to*, even though both normally require objects.

- Something that fills the role of the element missing from the gap occurs at the beginning of the clause.

- We use topicalization and *easy*-adjectives to illustrate the phenomenon:

 (13) *The manual, I can’t find _____

 (14) *Chris is easy to talk to _____*
Gaps and their fillers can be far apart

(15) The solution to this problem, Pat said that someone claimed you thought I would never find _____.

(16) Chris is easy to consider it impossible for anyone but a genius to try to talk to _____.

> Fillers often have syntactic properties associated with their gaps

(17) a. Him, I havent met _____.
 b. *He, I havent met _____.

(18) a. The scissors, Pat told us _____ were missing.
 b. *The scissors, Pat told us _____ was missing.

(19) a. On Pat, you can rely _____.
 b. *To Pat, you can rely _____.

> Thats why we call them long distance dependencies
Other relevant facts

- Various languages show morphological marking on the verbs or complementizers of clauses between the filler and the gap.

- Psycholinguistic evidence indicates increased processing load in the region between filler and gap.
A Rough Sketch of Our Approach

- A feature GAP records information about a missing constituent.

- The GAP value is passed up the tree by a new principle.

- A new grammar rule expands S as a filler followed by another S whose GAP value matches the filler.

- Caveat: Making the details of this general idea work involves several complications.

- The core idea comes from Gazdar (1981)
The Feature GAP

- Like valence features and ARG-ST, GAPs value is a list of feature structures (often empty). You can have multiple gaps.

- Subject gaps are introduced by a lexical rule.

- Non-subject gaps are introduced by revising the Argument Realization Principle.
The Revised ARP

\[\text{word} \]
\[\text{SYN} \quad \text{VAL} \quad \text{SPR} \quad \text{A} \]
\[\text{COMPS} \quad \text{B} \ominus \text{C} \]
\[\text{GAP} \quad \text{C} \]
\[\text{ARG-ST} \quad \langle \text{A} \ominus \text{B} \rangle \]

- \(\ominus \) is a kind of list subtraction
 - it’s not always defined (the sublist must exist on the main list)
 - when defined, it’s not always unique

- The ARP now says the non-\(\text{SPR} \) arguments are distributed between \(\text{COMPS} \) and \(\text{GAP} \).
A Word with a Non-Empty GAP Value
How We Want GAP to Propagate

Traditionally called SLASH: VP/NP
What GAP Propagation should doing

» Pass any GAP values from daughters up to their mothers,

... except when the filler is found.

» For topicalization, we can write the exception into the grammar rule

» For easy-adjectives, the NP that corresponds to the gap is the subject, which is introduced by the Head-Specifier Rule.

» Since specifiers are not generally gap fillers, we can’t write the gap-filling into the HSR.
Our Solution to this Problem

- For *easy*-adjectives, we treat the adjective formally as the filler, marking its SPR value as coindexed with its GAP value.

- We use a feature STOP-GAP to trigger the emptying of the GAP list.
 - STOP-GAP stops gap propagation
 - *easy*-adjectives mark STOP-GAP lexically
 - a new grammar rule, the **Head-Filler Rule** mentions STOP-GAP
The GAP Principle

A local subtree Φ satisfies the GAP Principle with respect to a headed rule if and only if Φ satisfies:

\[
\text{GAP} \left(A_1 \oplus \ldots \oplus A_n \right) \ominus A_0
\]

\[
\begin{array}{c}
\text{GAP} \\
A_1 \\
\ldots \\
H \\
\text{GAP} \\
A_i \\
\text{STOP-GAP} \\
A_0 \\
\ldots \\
\text{GAP} \\
A_n
\end{array}
\]
How does STOP-GAP work?

- STOP-GAP is empty almost everywhere

- When a gap is filled, STOP-GAP is nonempty, and its value is the same as the gap being filled.

- This blocks propagation of that GAP value, so gaps are only filled once.

- The nonempty STOP-GAP values come from two sources:
 - a stipulation in the Head-Filler Rule
 - lexical entries for easy-adjectives

- No principle propagates STOP-GAP
The Head-Filler Rule

\[
\begin{align*}
\text{phrase} & \rightarrow H \quad \text{GAP} \quad \langle \rangle \\
\text{HEAD} & \quad \text{verb} \\
\text{VAL} & \quad \text{SPR} \quad \langle \rangle \\
\text{GAP} & \quad \text{COMPS} \quad \langle \rangle \\
\text{STOP-GAP} & \quad \langle \rangle
\end{align*}
\]

- This only covers gap filling in Ss
- The filler has to be identical to the GAP value
- The STOP-GAP value is also identical
- The GAP Principle ensures that the mother’s GAP value is the empty list
Gap Filling with easy-Adjectives

(20)

Because STOP-GAP and GAP have the same value, that value will be subtracted from the mother’s GAP value.

The first argument is coindexed with the GAP value, accounting for the interpretation of the subject as the filler.
A Tree for *easy to talk to _______

```
Ap
  val
  spr [NP_i]
  gap [ ]

A
  val
  spr [ ]
  comps [ ]
  gap [ ]
  stop-gap [ ]
  easy

Vp/Np
  val
  spr [NP]
  gap [NP_i]
```

Long Distance Dependencies
Lexical entries with nonempty STOP-GAP values (like *easy*) are rare, so STOP-GAP is by default empty in the lexicon.

HeadSpecifier and Head-Modifier rules need to say `[STOP-GAP < >]`

Lexical rules preserve STOP-GAP values.
Q The initial symbol must say \([\text{GAP} <>]\). Why?

A To block *Pat found and *Chris talked to as stand-alone sentences.

Q The Imperative Rule must propagate GAP values. Why?

A It’s not a headed rule, so the effect of the GAP Principle must be replicated

A Imperatives can have gaps:

\textit{This book, put on the top shelf!}
Sentences with Multiple Gaps

-> Famous examples:

(21) *This violin, sonatas are easy to play _____ on _____.
(22) *Sonatas, this violin is easy to play _____ on ______.

-> Our analysis gets this:

-> The subject of easy is coindexed with the first element of the GAP list.
-> The Head-Filler rule only allows one GAP remaining.

-> There are languages that allow multiple gaps more generally.
Where We Are

➤ **filler-gap** structures:

(23) *The solution to this problem, nobody understood ________*
(24) *That problem is easy to understand ________*

➤ The feature GAP encodes information about missing constituents

➤ Modified ARP allows arguments that should be on the COMPS list to show up in the GAP list

➤ GAP values are passed up the tree by the GAP Principle
The feature STOP-GAP signals where GAP passing should stop

The Head-Filler Rule matches a filler to a GAP and (via STOP-GAP) empties GAP

Lexical entries for easy-adjectives require a gap in the complement, coindex the subject with the gap, and (via STOP-GAP) empty GAP on the mother
More Phenomena filler . . .

- Sentences with subject gaps
- Gaps in coordinate constructions
Subject Gaps

- The ARP revision only allowed missing complements.

- But gaps occur in subject position, too:

 (25) *This problem, everyone thought _____ was too easy.*

- We handle these via a lexical rule that, in effect, moves the contents of the SPR list into the GAP list.
The Subject Extraction Lexical Rule

\[\text{pi-rule} \]

INPUT \[\langle X, \]
\[\text{SYN} \]
\[\text{VAL} \]
\[\text{ARG-ST} \]
\[\rangle \]

\[\text{HEAD} \]
\[\text{verb} \]
\[\text{SPR} \]
\[\langle Z \rangle \]
\[\rangle \]

OUTPUT \[\langle Y, \]
\[\text{SYN} \]
\[\text{VAL} \]
\[\text{ARG-ST} \]
\[\rangle \]

\[\text{SPR} \]
\[\langle \rangle \]
\[\text{GAP} \]
\[\langle \rangle \]
\[\rangle \]

\[\text{ARG-ST} \]
\[\langle \rangle \]
\[\langle \rangle \]
\[\langle \rangle \]
\[\rangle \]

\[\text{NB: This says nothing about the phonology, because the default for pi-rules is to leave the phonology unchanged.} \]
A Lexical Sequence This Licenses

Note that the ARP is satisfied
Kim, we know ______ likes Bobby
Island Constraints

- There are configurations that block filler-gap dependencies, sometimes called **islands**

- Trying to explain them has been a central topic of syntactic research since the mid 1960s

- We’ll look at just one, Ross’s so-called **Coordinate Structure Constraint**

- Loose statement of the constraint: a constituent outside a coordinate structure cannot be the filler for a gap inside the coordinate structure.
Coordinate Structure Constraint Examples

(26) *This problem, nobody finished the extra credit and ______
(27) *This problem, nobody finished ______ and the extra credit.
(28) *This problem, nobody finished ______ and started the extra credit.
(29) *This problem, nobody started the extra credit and finished ______
(30) This problem, everybody started ______ and nobody finished ______

In a coordinate structure,

- no conjunct can be a gap (conjunct constraint)
- no gap can be contained in a conjunct if its filler is outside of that conjunct (element constraint)
 ... unless each conjunct has a gap that is paired with the same filler (across-the-board exception)
These observations cry out for explanation

➤ In our analysis, the conjunct constraint is an immediate consequence: individual conjuncts are not on the ARG-ST list of any word, so they can’t be put on the GAP list.

➤ The element constraint and ATB exception suggest that GAP is one of those features (along with VAL and FORM) that must agree across conjuncts.

➤ Note: There is no ATB exception to the conjunct constraint.

(31) *This problem, you can compare only ______ and ______.
Recall that we have tinkered with what must agree across conjuncts at various times.

Now we’ll add GAP to the things that conjuncts must share.
Our Final Coordination Rule

\[
\begin{align*}
\begin{bmatrix}
\text{VAL} & \text{IND} \\
\text{GAP} & \text{A}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\text{VAL} & \text{IND} \\
\text{GAP} & \text{A}
\end{bmatrix}
\ldots
\begin{bmatrix}
\text{VAL} & \text{IND} \\
\text{GAP} & \text{A}
\end{bmatrix}
\begin{bmatrix}
\text{HEAD} & \text{conj} \\
\text{IND} & s_0 \\
\text{RESTR} & \langle
\begin{bmatrix}
\text{ARGS} & \langle s_1, \ldots, s_{n-1}, s_n \rangle
\end{bmatrix}
\rangle
\end{bmatrix}
\begin{bmatrix}
\text{VAL} & \text{IND} \\
\text{GAP} & \text{A}
\end{bmatrix}
\end{align*}
\]

➢ We’ve just added \text{GAP} to all the conjuncts and the mother.

➢ This makes the conjuncts all have the same gap (if any)

➢ Why do we need it on the mother?
Closing Remarks on LDDs

- This is a huge topic; we’ve only scratched the surface

- There are many more kinds of LDDs, which would require additional grammar rules

- There are also more island constraints, which also need to be explained

- Our account of the coordinate structure constraint (based on ideas of Gazdar) is a step in the right direction, but it would be even better to explain why certain features must agree across conjuncts.
Overview of LDD

- Some examples of the phenomenon
- What is new and different about it
- Broad outlines of our approach
- Details of our approach
- Subject extraction
- Coordinate Structure Constraint
Add the semantics to the lexeme *easy* given on slide 18.

Then give the full rels list for the top node (i.e. the whole sentence) for (32) and (33). What is the deep subject of *easy* in each sentence?

(32) *My house is easy to find.*
(33) *Pat is easy to talk to.*
P1: A Tree with a Gap

Draw a tree for (34). Use abbreviations for the node labels, and show the value of GAP on all nodes. Show the value of STOP-GAP on any node where it is non-empty.

(34) This baby, I know that they handed a toy to _____
Examples (i) and (ii) are well-formed, but example (iii) is ungrammatical:

(i) *Pat thinks that I rely on some sort of trick.*
(ii) *This mnemonic, Pat thinks that I rely on.*
(iii) *This mnemonic, Pat thinks that I rely on some sort of trick.*

Explain in detail why the mechanisms that license (i) and (ii) do not also permit (iii).
P3: Subject Gaps

This problem is to make sure you understand how our analysis accounts for examples like (35).

(35)
 i. *Which candidates do you think like oysters on the half-shell?*
 ii. *That candidate, I think likes oysters on the half-shell.*

A. Sketch the family of lexical sequences for *likes* that is the input to the Subject Extraction Lexical Rule.

B. Sketch the family of lexical sequences for *likes* that is the corresponding output of the Subject Extraction Lexical Rule.

C. Sketch the tree for the sentence in (35ii). Use abbreviations for node labels, but show the value of GAP on all nodes and the value of STOP-GAP on any node where it is non-empty. You may abbreviate the structure over the NP *oysters on the half-shell* with a triangle.

Based on Chapter 14, Problem 3, Sag, Wasow and Bender (2003)
D. Does our analysis correctly predict the contrast between (35ii) and 36?

(36) *Those candidates, I think likes oysters on the half-shell.

Explain why or why not.
Questions (2017)

C: I found this week’s readings hard to follow because I don’t normally use those kind of sentences, except for the wh-questions. Q: What is the significance of having the GAP for wh-questions? Why can’t they just be COMPS, without the semantics?

A: Which book did you think your Father wanted someone to read *GAP*?
Q: On page 437, the book talked about the final version of the GAP Principle. I understand that the GAP value at the top would be the subtraction of the STOP-GAP values from sum of its daughters’ GAP values but why is the GAP-STOP value in (35) on the same node as the GAP value? Why isn’t it on the node with ’Kim’ since it is the one that fills up the gap? If that node ’S’ already has both the GAP and the STOP-GAP value, won’t it mean that the additional NP at the start of the sentence is unnecessary?

A: The head filler rule is written to put the stop gap in the head daughter. This makes it possible to have a single principle for constructions like this rule and lexical things like ’easy’.
Q: Based on my understanding of this week’s reading, only noun phrases are able to appear as gaps. As such, I still do not understand how the adjectives ’easy’ and ’hard’ are able to function as a gap filler. The textbook explains it by saying that they possess the feature STOP-GAP. Is there a reason as to why they have this feature in the first place?

A: to fill the gap :-)

Q: For 32b. [easy to talk to ___] (page 437), I don’t really understand the explanation on how it is not ’gappy’. How do we draw the tree for this?

A: the Gap is absorbed by easy.

Who did you talk to XXX (2 NPs: Who and you)

You are easy to talk to (1 NP: you)
Q: Is there a difference between a filler and a STOP-GAP? I’m still finding it difficult to visualise how these, along with the GAP itself, relate to the structure of a long distance dependency.

A: filler is just one example of stop-gap

Q: How does the contents in this chapter apply to phrases/sentences embedded within a sentence? For example, “The Linguistics convention (Jack has been looking forward to it) is this Tuesday.”

A: we treat these as S going to S MOD <NP> (as though it were an adverb). So not quite the same
Q: On page 437, there is an explanation of STOP-GAP. However, I don’t quite understand it. Can it be explained again in a simpler way, perhaps with an example?

A: I will try to do so.

Q: Have we covered/Will we cover how to model common conjunctions such as 'but', 'because', 'if', 'unless'?

A: No.

Q: In this weeks chapter, we are introduced to the concept of gaps. On page 429, I found my question: does gaps work the same as commas? If so, do we need to treat commas the same as apostrophes and input values for them.

A: Yes, fillers are often marked by commas in careful writing, so they should be part of the grammar.
Acknowledgments and References

Course design and slides borrow heavily from Emily Bender’s course: *Linguistics 566: Introduction to Syntax for Computational Linguistics*
http://courses.washington.edu/ling566