Overview

➢ Revision of Annotation
 ➢ Mark-up
 ➢ Annotation
 ➢ Regular Expressions
 ➢ The Hinoki Corpus

➢ Multi-modal Corpora

➢ Multi-lingual Corpora
Revision of Annotation
Corpus Annotation vs. Mark-Up

➤ **Mark up** provides objectively verifiable information
 ➤ Authorship
 ➤ Publication dates
 ➤ Paragraph boundaries
 ➤ Source text (URL, Book, …)
 ➤ License

➤ **Annotation** provides interpretive linguistic information
 ➤ Sentence/Utterance boundaries
 ➤ Tokenization
 ➤ Part-of-speech tags, Lemmas, Concepts
 ➤ Sentence structure (syntax, co-reference, roles)
 ➤ Domain, Genre
Dublin Core Ontology

➢ Goals

➢ Provides a semantic vocabulary for describing the “core” information properties of resources (electronic and “real” physical objects)
➢ Enables intelligent resource discovery systems

➢ Fifteen Elements:

➢ Content (7)
 * Title, Subject, Description, Type, Source, Relation and Coverage

➢ Intellectual property (4)
 * Creator, Publisher, Contributor, Rights

➢ Instantiation (4)
 * Date, Language, Format, Identifier

Geoffrey Leech’s Seven Maxims of Annotation

1. Annotation should be separable from text, leaving the raw corpus.

2. It should be possible to extract just the annotations from the text.

3. The annotation guidelines should be available.

4. Who did the annotation and how should be made clear.

5. The possibilities of errors should be made clear.

6. Annotation schemes should be theory-neutral

7. Standards emerge through practical consensus.
Types of Corpus Annotation

➢ Tokenization, Lemmatization

➢ Part-of-speech

➢ Syntactic analysis (chunks, parses)

➢ Semantic analysis (word senses, semantic roles)

➢ Discourse and pragmatic analysis (co-reference, time)

➢ Phonetic, phonemic, prosodic annotation

➢ Error tagging
How is Corpus Annotation Done?

- Mainly semi-automatic (done first by computer programs; post-edited)
 1. An small annotated corpus is built, entirely by humans
 2. Then a computer program is trained on this corpus
 3. Now new corpora can be automatically annotated using this program

- Large corpora often fully automatic
 - Segmentation
 - Part-of-speech tagging: accuracy of 97%
 - Lemmatization

- Corpora should indicate reliability of tags
 - Inter-annotator agreement, kappa (human)
 - Tagger accuracy (machine)
How are corpora represented?

- Far too many encoding schemes (TEI is common)
 - Header: for mark up
 - Body: for annotation

- Text: one sentence per line, POS affixed \texttt{can_VV}

- XML: `<s sid='1'><w wid='1' pos='vv'>can</w></s>`

- XML standoff:

  ```
  can
  <w pos='vv' cfrom='0' cto='3' />
  ```

- Often stored in a database in applications
Best Practices

➤ XML

➤ Header and documentation

➤ Open license

➤ Maintained (errors corrected, dynamic updates)
Case Study: the Hinoki Corpus

➢ Grammar-based syntactic annotation using discriminants
 ➢ Parse the corpus and select the best parse
 * discriminant-based selection is efficient
 ➢ Guarantees consistency
 ➢ Loses some trees
Discriminant-based Treebanking

- Calculate elementary discriminants (Carter 1997)
 - Basic contrasts between parses
 - Mostly independent and local
 - Can be syntactic or semantic

- Select or reject discriminants until one parse remains
 - $|\text{decisions}| \propto \log |\text{parses}|$

- Alternatively reject all parses
 - i.e., the grammar can not parse successfully
Derivations of kāten “curtain” (4/6)
Hinoki — Summary

➢ 5,000 sentences are annotated by three different annotators

➢ average inter-annotator agreement

➢ 65.4% (sentence)
➢ 83.5% using labeled precision bracket with same label in the same place
➢ 96.6% on ambiguous annotated trees
 most disagreement is in if the tree is good or not

➢ Hinoki corpus was then extended to another 30,000 trees
Regular Expressions

Regular expressions: a formal language for matching things.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>any single character</td>
</tr>
<tr>
<td>[]</td>
<td>a single character that is contained within the brackets.</td>
</tr>
<tr>
<td></td>
<td>[a-z] specifies a range which matches any letter from ”a” to ”z”.</td>
</tr>
<tr>
<td>[^]</td>
<td>a single character not in the brackets.</td>
</tr>
<tr>
<td>^</td>
<td>the starting position within the string/line.</td>
</tr>
<tr>
<td>$</td>
<td>the ending position of the string/line.</td>
</tr>
<tr>
<td>*</td>
<td>the preceding element zero or more times.</td>
</tr>
<tr>
<td>?</td>
<td>the preceding element zero or one time.</td>
</tr>
<tr>
<td>+</td>
<td>the preceding element one or more times.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>\</td>
<td>escapes the following character.</td>
</tr>
</tbody>
</table>
a wildcard character substitutes for any other character or characters in a string.

Files and directories (Unix, CP/M, DOS, Windows)
- * matches zero or more characters
- ? matches one character
- [] matches a list or range of characters
- E.g.: Match any file that ends with the string " .txt" or " .tex".
 - ls * .txt * .tex

Structured Query Language (SQL)
- % matches zero or more characters
- _ matches a single character
<table>
<thead>
<tr>
<th>Pattern</th>
<th>Explanation</th>
<th>Example</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>One exact word</td>
<td>mysterious</td>
<td>mysterious</td>
</tr>
<tr>
<td>[pos]</td>
<td>Part of speech</td>
<td>[vv*]</td>
<td>going, using</td>
</tr>
<tr>
<td>[pos*]</td>
<td>Part of speech</td>
<td>[v*]</td>
<td>find, does, keeping, started</td>
</tr>
<tr>
<td>[lemma]</td>
<td>Lemma</td>
<td>[sing]</td>
<td>sing, singing, sang</td>
</tr>
<tr>
<td>[=word]</td>
<td>Synonyms</td>
<td>[=strong]</td>
<td>formidable, muscular, fervent</td>
</tr>
<tr>
<td>word</td>
<td>wurd</td>
<td>Any of the words</td>
<td>stunning</td>
</tr>
<tr>
<td>x?xx*</td>
<td>wildcards</td>
<td>on*ly</td>
<td>only, ontologically, on-the-fly,</td>
</tr>
<tr>
<td>x?xx*</td>
<td>wildcards</td>
<td>s?ng</td>
<td>sing, sang, song</td>
</tr>
<tr>
<td>-word</td>
<td>negation</td>
<td>−[nn*]</td>
<td>the, in, is</td>
</tr>
<tr>
<td>word.[pos]</td>
<td>Word AND pos</td>
<td>can.[v*]</td>
<td>can, canning, canned (verbs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>can.[n*]</td>
<td>can, cans (nouns)</td>
</tr>
</tbody>
</table>
Multi-Modal Corpora
Language is not the only channel for communication: It is often combined with other modalities

- speech
- gesture
- facial expression
- gaze
- body posture
 - ECG (Electrocardiogram), HR (Heart Rate), GSR (Galvanic Skin Response)
- activity: nursing, drawing, building
- orthographic cues (color, size, font choice, . . .)

Corpora that include more than one of these are multi-modal
Early, influential dialog corpus (with maps)

Task
- Two speakers sit opposite one another
- Each has a map which the other cannot see
- The Instruction Giver has a route marked on their map
- The Instruction Follower has no route
- The goal is to reproduce the Instruction Giver’s route on the Instruction Follower’s map
- The maps are not identical and the speakers are told this

Conditions
- familiar (friends) vs non-familiar
- gaze vs no-gaze
The Maps
Some design points

➢ Landmarks chosen for phonetic properties
 ➢ /t/-deletion eg *vast meadow*
 ➢ /d/-deletion eg *reclaimed fields*
 ➢ glottalisation eg *chestnut tree*
 ➢ nasal assimilation eg *broken gate*

Making the data maximally useful

➢ Annotation
 ➢ POS, parse
 ➢ Discourse structure
 ➢ Gaze

➢ Now replicated in many languages and dialects (Dutch, Italian, Japanese, Swedish, Occitan, Portuguese, Australian, American and British English)
E-Nightingale: Nursing Task Corpus

➤ Japanese project to analyze Nursing tasks and dialogs

➤ recorder worn all day

➤ beeps at ten minute intervals (event-driven recording)
 ➤ Nurse records what they are doing

➤ Linked to location

➤ Very hard speech to decode

Hiromi Itoh Ozaku; Akinori Abe; Noriaki Kuwahara; Futoshi Naya; Kiyoshi Kogure; Kaoru Sagara *Building Dialogue Corpora for Nursing Activity Analysis* in LINC-2005

http://www.aclweb.org/anthology-new/I/I05/I05-6005.pdf
VACE Multimodal Meeting Corpus

Lei Chen (2007) VACE Multimodal Meeting Corpus Virginia Polytechnic Institute and State University (Video online at: http://videolectures.net/mlmi04uk_chen_vmmc/ accessed 2010-02-10)
British Sign Language Corpus

- 249 deaf signers of BSL from 8 regions around the UK: London (L), Bristol (BL), Cardiff (CF), Birmingham (BM), Newcastle (N), Manchester (M), Glasgow (G) and Belfast (BF).
- mixed for gender, age group, age of BSL acquisition, social class and ethnicity
- interviews (i); conversation (c); narrative followed by conversation (n-c)

Marked up with the above information

Not yet annotated or searchable

- some annotation available
- done in different sites
Multi-Lingual Corpora
Bitexts and more

➤ Multilingual corpora are useful for

➤ Contrastive linguistic analysis
 * Comparing distributions between languages
 * Learning about translations
 * using one language to describe the other

➤ Language learning
 * Teaching new phenomena in terms of what you already know

➤ Machine translation training
 * Learning translations directly
Europarl

- Large automatically aligned corpus of European parliament proceedings
- Translation between EU languages (EU funded project)
- 18-40 million words, .6–1.3 million sentences
- Freely available text in all European Languages
- Used in the Euro Matrix MT project

Europarl: A Parallel Corpus for Statistical Machine Translation, Philipp Koehn, MT Summit 2005

Euro Matrix SMT Results

<table>
<thead>
<tr>
<th>Input Language</th>
<th>Danish</th>
<th>French</th>
<th>English</th>
<th>Greek</th>
<th>Italian</th>
<th>Portuguese</th>
<th>Spanish</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleu 20.51</td>
<td>21.47</td>
<td>23.73</td>
<td>21.09</td>
<td>18.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleu 22.35</td>
<td>20.79</td>
<td>25.49</td>
<td>21.74</td>
<td>19.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleu 25.24</td>
<td>21.17</td>
<td>22.79</td>
<td>23.23</td>
<td>18.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleu 20.02</td>
<td>21.07</td>
<td>22.63</td>
<td>21.86</td>
<td>18.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleu 23.73</td>
<td>21.13</td>
<td>21.63</td>
<td>18.20</td>
<td>17.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleu 24.10</td>
<td>21.94</td>
<td>16.91</td>
<td>22.60</td>
<td>16.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleu 30.35</td>
<td>21.97</td>
<td>18.97</td>
<td>22.86</td>
<td>15.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleu 18.39</td>
<td>21.47</td>
<td>23.01</td>
<td>25.76</td>
<td>20.10</td>
<td>22.47</td>
<td>24.67</td>
<td>20.71</td>
<td>22.95</td>
<td>19.03</td>
</tr>
<tr>
<td>Bleu 18.75</td>
<td>22.35</td>
<td>11.88</td>
<td>23.66</td>
<td>17.49</td>
<td>22.49</td>
<td>26.49</td>
<td>21.28</td>
<td>25.49</td>
<td>20.51</td>
</tr>
<tr>
<td>Bleu 20.02</td>
<td>22.79</td>
<td>23.15</td>
<td>25.36</td>
<td>20.07</td>
<td>24.67</td>
<td>22.77</td>
<td>21.36</td>
<td>25.49</td>
<td>20.51</td>
</tr>
<tr>
<td>Bleu 21.74</td>
<td>20.02</td>
<td>13.00</td>
<td>23.66</td>
<td>19.95</td>
<td>22.49</td>
<td>21.36</td>
<td>23.28</td>
<td>25.49</td>
<td>21.23</td>
</tr>
<tr>
<td>Bleu 19.04</td>
<td>20.02</td>
<td>17.64</td>
<td>23.23</td>
<td>18.04</td>
<td>22.49</td>
<td>21.36</td>
<td>23.28</td>
<td>25.49</td>
<td>21.23</td>
</tr>
<tr>
<td>Bleu 18.57</td>
<td>25.24</td>
<td>17.64</td>
<td>23.66</td>
<td>17.59</td>
<td>22.49</td>
<td>21.36</td>
<td>23.28</td>
<td>25.49</td>
<td>21.23</td>
</tr>
<tr>
<td>Bleu 30.35</td>
<td>21.97</td>
<td>18.97</td>
<td>22.86</td>
<td>15.37</td>
<td>29.77</td>
<td>23.94</td>
<td>25.95</td>
<td>28.66</td>
<td></td>
</tr>
</tbody>
</table>
Linguistic similarity affects the statistical machine translation score:

- Highest: Spanish → French (BLEU = 40.27)
- Lowest: Italian → Finnish (BLEU = 11.08)

Translation done using the open source SMT System: Moses <statmt.org>

Creating all $n(n-1)$ language pairs took a week

It is easy to train new systems if you have a multi-lingual corpus
Interesting facts

➢ Also used for lexicon and thesaurus construction

➢ Several English on-line translations are actually French and no-one had noticed

➢ Almost entirely constructed automatically

➢ New languages being added to the EU means more data
OPUS

- On-line collection of multilingual text
- Mainly automatically created
 - OPUS multilingual
 - Europarl
 - OpenSubtitles
 - EUconst
 - Word Alignment Database
- Slightly hard to use interface

http://opus.lingfil.uu.se/
Opus Downloads & Samples

- EMEA - European Medicines Agency documents (5.0 GB)
- EUconst - The European constitution (67 MB)
- EUROPARL - European Parliament Proceedings (3.6 GB)
- OO - the OpenOffice.org corpus (34 MB)
- OpenSubs - the opensubtitles.org corpus (1.3 GB)
- KDE4 - KDE4 localization files (v.2) (1.4 GB)
- KDEdoc - the KDE manual corpus (35 MB)
- PHP - the PHP manual corpus (172 MB)
- SETIMES - A parallel corpus of the Balkan languages 2.3 GB)
- SPC - Stockholm Parallel Corpora (3.5 MB)
Taoteba

 ➢ User generated corpus of example sentences
 ➢ Not authentic at all
 ➢ Short and well aligned (thus easy to process)

 ➢ Used for teaching, learning and MT research

(1) あの木の枝に数羽の鳥がとまっている。
 あの木の枝に数羽の鳥がとまっている。
 (jp)
 ano ki no eda ni suu hiki no tori ga tomatte iru.
 that tree of branch on some wing of bird SBJ stop be.
 ”Some birds are sitting on the branch of that tree.” (en)
 ”Des oiseaux se reposent sur la branche de cet arbre.” (fr)
 (also Hebrew, Esperanto, Italian: added since 2009)
Task

➢ Pick a couple of relatively basic words: *dog, tree, all* for which you know the translation in some language.

➢ Look at the word in the OPUS subtitle corpus and Tatoeba
 ➢ How often is it translated into a word you know?
 ➢ How often is it not translated at all?

➢ Now try one of the more technical corpora

Translations can be very surprising.
Other Large Multilingual Corpora

- Canadian Hansard
- Hong Kong Hansard
- Bible Translation Corpus
- Universal Declaration of Human Rights
- Swadesh list
- GALE Chinese-English, Japanese-English (DoD)
- NICT Japanese-English, Japanese-Chinese
- NTU Multilingual Corpus
Sentence Alignment

➤ Various ways to align sentences

➤ Length-based
 ➤ Gale-Church algorithm (basically match sentence length in characters)

➤ Other lexical methods are also popular
 ➤ match using a dictionary
 ➤ content words only

➤ The better the alignment, the easier
Word Alignment

➢ GIZA++ — match words depending on shared position
 ➢ How many times to two words appear in the same sentence pair
 ➢ Hard to match very free translations, also MWEs

➢ Lexically-based (using dictionaries and thesauruses) are also common

➢ Typically newspapers may have length differences of up to a third

➢ The more direct the translation, the easier it is to align
 ➢ Many things do not align clearly